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A B S T R A C T  

In the present paper we consider recursive games that satisfy an absorbing 
property defined by Vieille. We give two sufficient conditions for existence 
of an equilibrium payoff in such games, and prove that if the game has 
at most two non-absorbing states, then at least one of the conditions is 
satisfied. Using a reduction of Vieille, we conclude that every stochastic 
game which has at most two non-absorbing states admits an equilibrium 
payoff. 

1. I n t r o d u c t i o n  

A two-player  s tochas t ic  game is played in stages. At  every s tage the  game is 

in one of f ini tely many  s ta tes .  Each of the  players  chooses independen t ly  of 

his opponen t  an ac t ion  in his ac t ion space. The  pair  of act ions,  toge ther  wi th  

the  current  s ta te ,  de te rmine  the dai ly  payoff for the  players  and  the p robab i l i ty  

d i s t r ibu t ion  according to which a new s ta te  of the  game is chosen. 

An  e q u i l i b r i u m  p a y o f f  is a vector  of payoffs g = (g~) (where s is a s t a t e  and  

i is a player) ,  such t ha t  for every e > 0 there  is a s t ra tegy  profile (which is called 

an e - e q u i l i b r i u m  p r o f i l e ) ,  t ha t  satisfies for every ini t ia l  s ta te  s: 
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�9 If the players follow this strategy profile, then the expected liminf of the 

average payoffs of each player i in the infinite game, as well as the expected 

average payoff in any finite game which is sufficiently long, is at least g~ - c. 

�9 If any player i deviates to another strategy, then the expected lim sup of his 

average payoffs in the infinite game, as well as his expected average payoff 

in any finite game which is sufficiently long, is at most g~ + c. 

If the game is zero-sum, then the unique equilibrium payoff is the value of the 

game. Mertens and Neyman [4] proved that every zero-sum stochastic game has 

a value. Vrieze and Thuijsman [11] proved that every non zero-sum stochastic 

game, in which only one state is non-absorbing, has an equilibrium payoff (a 

state is abso rb ing  if the probability to leave it, whatever the players play, is 0; 

otherwise, it is non-absorbing) .  

Vieille [8, 9] proved that in order to prove existence of equilibrium payoffs in 

general stochastic games it is sufficient to prove the existence for the class of 

pos i t ive  recurs ive  games  w i t h  t he  absorb ing  p rope r ty .  In these games 

the daily payoff for the players is 0 in every non-absorbing state whatever actions 

they play, the payoff for player 2 in absorbing states is positive, and if player 

2 plays a fully mixed stationary strategy then the game eventually reaches an 

absorbing state with probability 1, whatever player 1 plays. 

Following closely Vieille'.s reduction reveals that he proves even more. Vieille 

proves that  if every positive recursive game with the absorbing property and 
at most n non-absorbing states has an equilibrium payoff, then every stochastic 

game with at most n non-absorbing states has an equilibrium payoff. 

In the present paper we give two sufficient conditions for existence of an 

equilibrium payoff in positive recursive games with the absorbing property. 

Furthermore, we prove that every positive recursive game with the absorbing 

property, which has at most two non-absorbing states, satisfies at least one of 

these conditions. By the reduction of Vieille we conclude that every stochastic 

game which has at most two non-absorbing states has an equilibrium payoff. 

The basic difficulty with undiscounted stochastic games is that  the undis- 

counted payoff is not continuous over the strategy space. To overcome this 

difficulty we note that since player 2 can force absorption, and his absorbing 

payoff is always positive, it follows that his min-max value is positive. Since 

the payoff in non-absorbing states is 0, every c-equilibrium strategy profile (if it 

exists) must be absorbing with high probability (for c sufficiently small). 

We define e-approximating games, where player 2 is restricted to fully mixed 

stationary strategies, and player 1 is not restricted. As e -+ 0, the restrictions 
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on player 2 become weaker. Since the game satisfies the absorbing property, 

the undiscounted payoff is continuous over the restricted strategy space, and 

using a standard fixed point theorem one can prove that there exists a stationary 

equilibrium profile in the e-approximating game. By studying the asymptotic 

behavior of a sequence of equilibria in the e-approximating games we construct 

different types of equilibrium payoffs in the original undiscounted game. 

Unfortunately, the equilibrium payoff need not be equal to the limit of the equi- 

librium payoffs of the e-approximating games, hence, as in Vrieze and Thuijsman 

[11], we cannot generalize the approach for games with more than 2 non-absorbing 

states. We hope that an approach similar to ours can prove that an equilibrium 

payoff exists in any positive recursive game with the absorbing property. 

The method of studying asymptotic behavior of equilibria in approximating 

games was used by Vrieze and Thuijsman [11] to prove existence of equilibrium 

payoff in stochastic games with a single non-absorbing state. In their case the 

approximating game was the discounted stochastic game. Restricting one of the 

players to play a fully mixed stationary strategy in order to make the undis- 

counted payoff continuous, appeared already in Evangelista et al. [2]. 

Independently, Vieille [10] has proved the existence of an equilibrium payoff in 

general positive recursive games with the absorbing property. In VieiUe's proof, 

as in our approach, player 1 is not restricted, whi}e player 2 is restricted in his 

choice of a strategy. Vieille defines for every e > 0 a correspondence (set-valued 

function) that assigns for each pair of stationary strategies of the two players (i) 

the set of best reply stationary strategies of player 1 against the strategy used by 

player 2, and (ii) a collection of fully mixed stationary strategies of player 2 which 
are almost optimal against the strategy of player 1. Using standard arguments 

Vieille proves that for every e > 0 this correspondence admits a fixed point and, 
by studying the asymptotic behavior of a sequence of fixed points, he is able to 

construct e-equilibrium strategy profiles. 

The main difference between the two approaches is that, while we define an 
approximating game and study equilibria in this game, Vieille defines an approxi- 

mating best reply correspondence, and studies fixed points of this correspondence. 

Furthermore, Vieille's definition of the approximating best reply correspondence 

is more sophisticated than our definition of the approximating games. Vieille's 

technique was applied successfully to prove the existence of stationary extensive 
form correlated equilibria in n-player positive recursive games (see Solan and 

Vieille [7]). 

The paper is arranged as follows. In section 2 we give an example of a recursive 
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game with the absorbing property, and show some of the equilibrium payoffs in 

this game. In section 3 we give the model of stochastic games and state the main 

result. In section 4 we state and prove two sufficient conditions for existence of 

an equilibrium payoff. 

Sections 5-7 are devoted to prove that  in every positive recursive game with 

the absorbing property, which has at most two non-absorbing states, at least one 

of the sufficient conditions hold. In section 5 we give some preliminary results, 

in section 6 we introduce the e-approximating games, and in section 7 the main 

result is proven. In section 8 we give an example of a game with more than two 

non-absorbing states, and show why our approach fails in this game. 

2. A n  e x a m p l e  

Consider the following positive recursive game: 

T 

B 

s t a t e  1 s t a t e  2 

L C R L R 

2/3 2 

1/3 4, 1 

I/2 2 

1/2 3, 0 * 

T 

B 

0,0 * 1 

1 0,0 * 

Player 1 is the row player, while player 2 is the column player. An asterisked 

entry means that  if this entry is reached then the game moves with probability 1 

to an absorbing state which yields the players a payoff as indicated in the entry, 

while a non-asterisked entry means that  if this entry is reached then the game 

moves to the state that  is indicated by the entry (and the players receive no daily 

1/2 2 �9 

l/2 3,0 

payoff). An entry of the form 

means that  with probability 1/2 the game moves to an absorbing state, where 

the payoff for the players is (3,0), and with probability 1/2 the game moves to 

state 2. 
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Note that if player 2 plays a fully mixed stationary strategy then the game 

is bound to be eventually absorbed, whatever player 1 plays, hence the game 

satisfies the absorbing property. 

One equilibrium payoff is ((2, 0), (1,0)). An e-equilibrium strategy profile (for 

every e > 0) is: 

�9 In state 1 the players play the mixed actions (T, (1 - ~)L + ~R). 

�9 In state 2 both players play the mixed actions (�89 �89 

�9 If any player plays an action which has probability 0 to be played, then 

both players play the pure actions (T, L) in both states forever (this part 

of the strategy serves as a punishment strategy). 

It is easy to verify that no player can profit more than e by any deviation, and 

that this strategy profile yields the players the desired payoff. 

Another equilibrium payoff is ((2, 4/17), (1, 2/17). An e-equilibrium strategy 

profile for this payoff is more complex. Let nl E N and el < e such that 

( 1  - el) nl = 1/2. Define the following strategy profile: 

�9 In state 2, the players play the mixed actions (�89 �89 

�9 Assume the game moves to state 1. The players play as follows: 

- The players play the mixed actions ((1 -el)T + elB, (1 - e l ) L  + elC). 

The players play these mixed actions until player 2 played the action 

C for nl times, or until both players played (B, C) at the same stage 
(and the game leaves state 1). 

- If player 2 played the action C for nl times, then the players play 

the mixed actions (T, (1 - c)L + eR) until player 2 plays the action R 

(and the game leaves state 1). 
- If any player plays an action which has probability 0 to be played, 

the players play the pure actions (T, L) in both states forever. 
Note that if the players follow this strategy profile, then the game is bound to 

be eventually absorbed. 

Assume that the players follow the above strategy profile, and let g -- (g~) be 
the payoff that the players receive. Clearly no player can deviate and gain in 
state 2, and g~ -- g~/2 for i = 1, 2. 

Moreover, we have 

1) gl=  (4,1)+592 

and therefore gl -- (2, 4/17). 

If player 2 deviates in state 1, then he cannot gain more than e, since after the 

punishment begins, his expected payoff is 0. The expected payoff of player 1 is 
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2, whether the game leaves state 1 through the entry (B, C) or through (T, R). 

Hence player 1 cannot profit by any deviation. Therefore this strategy profile is 

an e-equilibrium, as desired. 

3. T h e  m o d e l  a n d  t h e  ma in  r e su l t  

A s t o c h a s t i c  g a m e  is a 5-tuple G = (S, A, B, u, w) where 

�9 S is a finite set of states. 

�9 A and B are finite sets of actions available for players 1 and 2 respectively 

in every state. 

�9 u: S • A • B ~ R 2 is the daily payoff function, ui(s, a, b) being the payoff 

for player i in state s when the two players play the actions a and b. We 

assume w.l.o.g, that lul is bounded by 1. 

�9 w: S x A • B --+ A(S) is the transition function, where A(S) is the space 

of all probability distributions over S. 

The game is played as follows. Let sl E S be the initial state. At ev- 

ery stage n, the players are informed of past play including the current state 

(sl, al ,  bl, s2, a2, b2, . . . ,  Sn), and player 1 (resp. player 2) chooses an action an E 
i " bn), A (resp. bn E B). Then each player i receives a daily payoff r n = u*(sn, an, 

and a new state Sn+l is chosen according to w(s,~, a,~, bn). 

Let H '~ = S • (A x B x S) n be the space Of all histories of length n, Ho = 

UnEN Hn be the space of all finite histories and H = S x (A x B x S) N be the 

space of all infinite histories. H is measurable with the a-algebra generated by 

all the finite cylinders. 

Detinition 3.1: A b e h a v i o r a l  s t r a t e g y  of player 1 (resp. player 2) is a function 

a: H0 --+ A(A) (resp. r: H0 --+ A(B)).  A strategy a is s t a t i o n a r y  if a(ho) 

depends only on the last state of ho. It is ful ly m i x e d  if supp(a(h0)) = A for 

every h0 E H0. Symmetric definitions hold for player 2. 

A s t r a t e g y  prof i le  (or simply a profi le)  is a pair of strategies, one for each 

player. Any profile (a, ~-) and initial state s induce a probability measure over 

H.  We denote this probability measure by Prs,~,~ and expectation according to 

this measure by Es,~,~. 

t i \ i = l , 2  De~nition 3.2: A vector g = Lgs)seS E R 21sl is an e -equ i l ib r ium payof f  if 

there exists a profile (a, T) and a positive integer N E N such that for every 

initial state s, every strategy a ~ of player 1 and every n >_ N, 

( ) ( 1 r I + . . .  + rn 
(1) Es,~,r r ] + ' " + r n  >_g]-e>_E~,o , , r  - 2 e ,  

n n 
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(2) E s ~ r ( l i m i n f  r ~ + ' ' ' + r ~ )  > g ~ - e > E s , ~ , , r ( l i m s u p  r ~ + ' ' ' + r ~ )  
' ' k n - * o o  n - - \ n - * ~  n ' 

and analogous inequalities hold for player 2, for every strategy T ~. The profile 

(a, 7) is an e -equ i l ib r ium prof i le  for g. The payoff vector g is an e q u i l i b r i u m  

payof f  if it is an e-equilibrium payoff for every e > 0. 

Definition 3.3: A state s C S is a b s o r b i n g  if Ws(S,a,b) -- 1 for every pair of 

actions (a, b) E A x B. Otherwise it is non -abso rb ing .  

The main result of the paper is the following. 

THEOREM 3.4: Every stochastic game with at most two non-absorbing states 

admits an eq~zilibrium payoff. 

Let T C S be the set of all absorbing states and R = S \ T .  Let 0 = 

min{t >_ 1, st E T} be the absorption stage (the minimum of an empty set is 

+co); that is, the first stage in which the play reaches an absorbing state. 

Definition 3.5: The game is pos i t ive  if u2(s,a,b) > 0 for every s C T, and 

every (a,b) C A x B. It is r ecu r s ive  if ui(s,a,b) = 0 for every s ~ T, every 

(a, b) E A x B and every player i = 1, 2. It satisfies t h e  a b s o r b i n g  p r o p e r t y  if 

for every fully mixed stationary strategy y of player 2, every strategy a of player 

1 and every state s E S, 

Prs,o,y(0 < +oc) = 1. 

The following theorem follows from Vieille [8, 9]: 

THEOREM 3.6: I f  every positive recursive game with the absorbing property and 

at most n non-absorbing states admits an equilibrium payoff, then every stochas- 
tic game with at most n non-absorbing states admits an equilibrium payoff. 

Since existence of equilibrium payoffs in stochastic games with one non- 

absorbing state was solved by Vrieze and Thuijsman [11], to prove Theorem 

3.4 it is sufficient to prove the following. 

PROPOSITION 3.7: Every positive recursive game with the absorbing property 
and two non-absorbing states admits an equilibrium payoff. 

The rest of the paper is devoted to prove this result. 

From now on we fix a positive recursive game that satisfies the absorbing 

property. Note that any absorbing state is equivalent to a repeated game, in 

which equilibrium payoffs are known to exist. Since we are interested in the 

existence of equilibrium payoffs, we can assume w.l.o.g, that u(s,., .) is constant 
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over each s E S, and we denote this constant value by us. Moreover, for this 

reason, the assumption that the available sets of actions are independent of the 

state is not restrictive (one can add to each player, if necessary, actions that lead 

to absorbing states with low absorbing payoff for that player, and high absorbing 

payoff for his opponent). 

Since the game is recursive, limn-~oo(r~ + . . .  + r~) /n  exists. Moreover, for 

recursive games, for every fixed pair of strategies (a, T) and every initial state s, 

Es,~,r lim rl  r~ = lim Es,~,r 
\ n - - , , ~  n n--,,oo 

In particular, condition (1) in Definition 3.2 implies condition (2). 

Let c 1 c 1 = ( s)seS be the min-max value of player 1. This is the first coordinate 

of the (unique) equilibrium payoff of the zero-sum game that has the payoff 
2 function (u 1, - u l ) .  The min-max value of player 2, c 2 = (cs)ses, is the second 

coordinate of the (unique) equilibrium payoff of the zero-sum game that  has the 

payoff function ( - u  2, uS). By Everett [3] or Mertens and Neyman [4], c 1 and c 2 

exist. 
2 Note that  since the game is positive and satisfies the absorbing property, c s > 0 

for every s E S (player 2, by playing some fully mixed stationary strategy, can 

guarantee a positive payoff, whatever player 1 plays). 

We identify each a E A (resp. b E B) with the probability distribution in A(A) 

(resp. A(B)) that  gives weight 1 to a (resp. b). 
Let X = (A(A))  s and Y = (A(B) )  s. Every x E X and y E Y can be 

interpreted as a stationary strategy. We view each stationary strategy of player 
1 as a vector in RlSi.IAI and each stationary strategy of player 2 as a vector in 

R Isl'lBI. Whenever we use a norm, it is the maximum norm. 

For every subset C C_ S and every (s, a, b) E S • A • B we denote wc(s ,  a, b) = 
~-~s,eC Ws,(S, a, b). The multi-linear extension of w is denoted by w. 

For every (a,/3) E A(A) • A(B) and every function g: S ~ R 2 we define 

(3 )  = 
s 'ES 

Cg (s, a, fl) is the expected payoff for the players if the game is in state s, they play 

the mixed actions (c~, fl), and the continuation payoff is given by g. Note that  

for every fixed s, the function r .) is multi-linear over A(A) x A(B) x R 21sl, 

and therefore continuous. 
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4. SufFicient conditions for existence of equilibrium payoff 

In this section we provide two sets of sufficient conditions for existence of an 

equilibrium payoff in positive recursive games with the absorbing property. 

Definition 4.1: Let (x, y) be a stationary profile. A set C c_ S is stable under 

(x,y) i fwc(s ,x ,y )  = 1 for every s E C. 

Definition 4.2: Let (x, y) be a stationary profile. The stationary profile (x', y') 
is a p e r t u r b a t i o n  of (x, y), if supp(x~s) _D supp(x,) and supp(y'8) _D supp(ys). It 

is an e-perturbation of (x, y) if it is a perturbation of (x, y), II x - x' [[< e and 

tl y - y' i l< e. 

Definition 4.3: Let (x, y) be a stationary profile. A set C C_ R is c o m m u n i c a t -  

ing w.r.t. (x, y) if for every s E C there exists a stationary perturbation (x', y') 
of (x, y) such that  C is stable under (x, y) and 

Prs,,=,,y,(Bn E N s.t. s ,  = s) = 1 Vs' E C. 

A set C is communicating if the players, by changing their stationary strategies 

a little, can reach from any state in C any other state in C, without leaving the 

set. Note that  if there exists a perturbation (x', y') that satisfies Definition 4.3, 

then there also exists an e-perturbation that satisfies it. 

We denote by r y) the collection of all communicating sets w.r.t. (x, y). 

Define for every communicating set C E C(x, y) and every state s E C 

A~(C,y) ={a E A s.t. wc(s,a, ys) < 1} and 
(4) 

B~(C,x) ={b e B s.t. wc(s, xs, b) < 1}. 

Those are all actions at s that cause the game to leave C with positive probability, 

when the opponent plays x~ or y~. 

Definition 4.4: Let (x, y) be a stationary profile and C E C(x, y). Every triplet 

(s,x~,,ys), where s E C and x'8 �9 A(A~(C,y)), is an exi t  of  p layer  1 from C. 

Every triplet (s, xs, y~8), where s E C and Y's E A(B~(C, x)), is an exi t  of  p layer  

2 from C. Every triplet (s, x',, Y'8) �9 C x A(A) x A(B) such that  

supp( ,) n supp( ',) = supp( s) n supp(y' , )  = 0 

! 
is a j o in t  ex i t  from C if we(s, x~, y!~) < 1 while we(s, x~, y'8) = we(s, x'~, y~) = 1. 

X l  - f \ X I A joint exit (s, s, Ys) is pu re  if I supp(x's) I -- I supp(y'8) I = 1. An exit (s, s, Ys) 
of player 1 is pu re  if [supp(x',) I = 1. An exit (s, xs,y',) of player 2 is pu re  if 

I supp(y' , ) l  = I. 
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We denote by D ~ ( x , y ) , D 2 ( x , y )  and D 3 ( x , y )  the sets of exits of player 1, 

player 2 and the joint exits from C respectively. Let 

Ec(x ,  y) = D~(x,  y) U D~(x,  y) U D3(x ,  y) 

be the set of all exits from C and E~ y) be the set of all pure exits from C. 

We denote by s(e), x(e) and y(e) the three coordinates of each exit e. 

For simplicity we write s �9 C(x, y) whenever {s} �9 C(x, y). In this case we 

write Es(x,  y) instead of E{8}(x, y). 

Recall that  R is the set of non-absorbing states, and T is the set of absorbing 

states. 

LEMMA 4.5: Let (x,y)  be a stationary profile such that R E C(x,y).  Assume 

there exist an exit e E ER(x, y) and a vector g = (gs)ses E R 2Is1 such that 

1. gs = us for every s E T, and g8 = Cg(e) for each s E R. In particular, g8 is 

a constant over R. 

2. gl s > r  ys) for every s E R and a E A. 

3. g2 _> r ' xs, b) for every s E R and b E B. 

4. Ire �9 D (x,y) then gl = a, every a �9 supp(x(e)).  

5. Ire �9 D 2 ( x , y )  then g2 = r162 t'or every b �9 supp(y(e)). 

Then g is an equilibrium payoff. 

1 for every s �9 S, and condition 3 Note that  condition 2 implies that g~ _> c~ 

2 for every s �9 S. implies that  g2 _> c~ 

The intuition is the following. Our goal is to construct an c-equilibrium profile 

where the game leaves R (and is absorbed) through the exit e. By condition 

1, the expected payoff for the players is Cg(e). Since R is communicating, the 

players can play in such a way so that s(e) is eventually reached with probability 

1. By conditions 2 and 3 no player can profit by a detectable deviation. It might 

be the case that  e is an exit of player 1, and that [supp(x(e)) I > 1. In this 

case, if the expected absorbing payoff of player 1 is different if he uses different 

actions in supp(x(e)), he will prefer using some actions in supp(x(e)) over others. 

Condition 4 asserts that this is not the case, and player 1 is indifferent between 

all the actions in the support of x(e). Condition 5 is the analogous condition for 

player 2. 

An analogous result was proved in Solan [6, Lemma 5.3] in the context of 

n-player absorbing games. 

Proof'. Let e > 0 and ~ �9 (0, e) be sufficiently small, and let (x~,y ~) be an 
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e-perturbation of (x, y) such that  

Prs,,~,,u,(3n C N s.t. s~ = s(e)) = 1 Vs' E R. 

Since R E C(x, y), such a perturbation exists. 

Define a profile a as follows: 

�9 Whenever the game is in state s(e) the players play the mixed action 

combination ((1 - 5)xs(e) + 5x(e), (1 - 5)ys(e) + by(e)). 
�9 Whenever the game is in a state s ~ s(e) the players play the mixed action 

X ! i combination ( s, y~). 

If the players follow a then the game is bound to exit R through e, and to be 

absorbed. Hence, by condition 1, the expected payoff for the players is g~, where 

s is the initial state. 

In order to prevent the players from deviating, we choose tl  E N sufficiently 

large and add the following statistical tests at each stage t: 

1. Both players check whether the realized action of their opponent is 

compatible with (r. 

2. If e E D2(x, y) and the game visited the state s(e) at least t l  times, then 

player 2 checks whether the distribution of the realized actions of player 

1, whenever the game is in s(e), is e-close to x~(e). If e C D~(x, y), then 

player 1 employs a symmetric test. 

3. If e e D3(x, y) and the game visited the state s(e) at least tl times, then 

player 1 checks whether the realized actions of player 2 whenever the game 

is in s(e), restricted to supp(y(e)), is e-close to y(e). Player 2 employs a 

symmetric test. 

If  a player fails one of these tests, this player is punished by his opponent with 

an c-min-max strategy forever. 

Since player 1 may profit by causing the game never to be absorbed (if e C 

D1R(X, y) and r < 0), we add one more test. Let t2 C N be sufficiently large 

such that  if no deviation is detected then absorption occurs before stage t2 with 

probability greater than 1 - e. We add the following test to a: 

4. At stage t2 both players switch to an e-min-max strategy. 

The constants 5 and tl  are chosen in the following way. If e C D2(x, y) then tl  

is chosen sufficiently large such that  the probability of false detection of deviation 

in the second test is bounded by e; that  is 

P r ( ] i f ( t - x ( e )  l] Vt > tl) > l - e ~ 2  

1 t where )~t = 7 ~-~j=l Xj and {Xj} are i . i .d.r .v,  with distribution x(e). If e E 

D1R(X, y) then tl  is defined analogously. 
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The constant d is chosen sufficiently small such that the probability of 

absorption in tl visits to s(e) (i.e., before the second statistical test is employed) 

is at most e; that is 

(1-5) t' > 1 -  e. 

If e 6 D~(x,  y) then 5 and tl are chosen in such a way that the probability 

of false detection of deviation in the third test, as well as the probability of 

absorption before this test is employed, given only one player deviates, is at most 

e. Since, whenever the game is in state s(e), absorption occurs with probability 

O(~2), while perturbations occur with probability 5, if ~ is sufficiently small then 

such tl exists. For a detailed analysis of this choice, one can refer to Solan [6]. 

Let n be sufficiently large. By conditions 2 and 3, the players cannot increase 

their expected average payoff in the first n stages by more than e, using any de- 

tectable deviation. If e is sufficiently small, then using a non-detectable deviation 

cannot increase the expected average payoff in the first n stages by more than 

2e. Hence g is an equilibrium payoff. I 

LEMMA 4.6: Let (x, y) be a stationary profile, and g = (gs)ses E R 2tsl. Assume 

the following conditions hold: 

1. gs = us for every s E T. 

2. g~ >_ e l ( s ,  a, Ys) for every s 6 R and a 6 A. 

3. g2 >_ r ' xs, b) for every s 6 R and b E B. 

4. For every s 6 R one of the following two conditions hold: 

(a) either s f~ C(x, y) and 

i. g~ = r ys) for every a E supp(xs), 

ii. g~ = r xs, b) for every b 6 supp(ys); 

(b) or s 6 C(x, y) and there exist two exits el, e~ 6 Es(x, y) and a �9 [0, 1] 
that satisfy the following: 

i. r = g] for each j = 1, 2, and g~ = a r  (1 -a)r  

ii. if ej 6 D~(x, y) then 01 = r a, Ys) for every a 6 supp(x(ej)), 

iii. i f  ej �9 D~(x,y) then 

_> xs, bl) = xs, b,) > r  xs, b3) 

for every bl, b2 6 supp(y(ej)) and b3 6 B, 

iv. at most one of el and e2 is all exit of player 2. 

5. The Markov chain over S whose transition law is induced by (xs, Ys) for 

every s ~ C(x, y) and by c~el + (1 - a)e2 for every s E C(x, y) is absorbing 

(/.e. an absorbing state is reached with probability 1). 
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Then g is an equilibrium payoff. 

Note that  condition 4(b).iv is redundant, since, if el, e2 E D~(x, y), then, by 

4(b).i and 4(b).iii, r -- r one can define (with abuse of notations) 

e~ = ael  § (1 - a)e2, and then condition 4(b) is satisfied with e~ and a '  -- 1. 

The inthition here is as follows. By condition 4, every non-absorbing state is 

either transient under (x, y), or there exist two exits that  satisfy various condi- 

tions. We will devise a profile under which, in transient states, the players follow 

(x, y), whereas in non-transient states, the play leaves the state through these 

two exits. 

By condition 5 the game eventually reaches an absorbing states, and by con- 

ditions 1, 4(a) and 4(b).i, the expected payoff for the players is g. By conditions 

2 and 3 no player can profit by playing an action he is not supposed to play. By 

condition 4(a) no player can profit by any deviation in transient states. As we 

will see, condition 4(b) implies the same in non-transient states. 

Proof'. Let e > 0 and 5 E (0, e) be sufficiently small. For every s E C(x, y) we 

consider the two exits el, e2 of condition 4(b). We assume w.l.o.g, that  ~b~(el) ~ 

r In particular, by condition 4(b).i, r 7_ 982 >__ r and by condition 

4(b).iii it follows that  el r D2s(x, y). 
Define a profile a as follows: 

a) Whenever the game is in a state s C R such that s ~ C(x, y), the players 

play (xs, Ys)- 
b) Whenever the game is in a state s C R such that s C C(x, y), the players 

play as follows: 

�9 P lay  ((1 - 5 )xs  + 5x(e ), (1 - 5)ys + 5y(e )) for n s tages  or unt i l  an 

action combination in the support of (x(el), y(el)) is played, where n 

satisfies: 
- (1 - 5) n = 1 - a if el is a unilateral exit, 

- (1 - 52) n = 1 - a if el is a joint exit. 

�9 Play ((1-5)x~+bx(e2), (1-5)ys+by(e2)) until an action combination 

in the support of (x(e2), y(e2)) is played. 

If an action combination in the support of (x(ej), y(ej)) is played, but the 

game remains in s, the players repeat step (b). 

By condition 5, if the players follow a then the game is bound to be eventually 

absorbed, and by conditions 1, 4(a) and 4(b).i the expected payoff for the players 

is gs, where s is the initial state. 

In order to prevent the players from playing actions which are not compatible 

with a, the players check, as in Lemma 4.5, that the realized action combination 
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that  is played is compatible with a. 

In order to prevent other deviations, we add the following statistical tests. 

Assume that  the game moves to a state s E C(x,y) at stage to. Let tl , t2 E N 

be sufficiently large, and let el, e2 be the two exits from {s} of condition 4(b). 

Each player checks his opponent behavior as follows at every stage t such that  

to < t < to + n: 

1. If el G D~(x,y) and the game has visited s for at least t l  times, then 

player 1 checks whether the distribution of the realized actions of player 2 

at stages to, to + 1 , . . . ,  t - 1 is ~-close to xs. 

2. If  el E D2s(x, y), a symmetric test is done by player 2. 

3. If el C D3(x, y) and the game has visited s for at least t2 times, then 

both  players check whether the realized actions of their opponent at stages 

to, to + 1 , . . . ,  t - 1, restricted to supp(x(el))  and supp(y(el)) ,  is e-close to 

x(ei)  and y(el) respectively. 

If a player fails this test at a stage to _< t _< to + n, this player is punished with 

an e-rain-max strategy forever. 

If no deviation is detected before stage to + n, then each player begins to check, 

in a similar way, if his opponent continues to follow a, until the game leaves the 

state s (i.e. replace el by e2 in the statistical tests). 

Since it might be the case that  both exits are unilateral exits of player 1, and 

that  g~ < 0, so that  player 1 gains if the game is never absorbed, we add the 

following test. Let t3 be sufficiently large such that  if no deviation is detected 

then leaving s occurs in t3 stages with probability greater than 1 - (. As in the 

proof of Lemma 4.5, at stage to +t3 both players switch to an e-min-max strategy. 

The constants tl ,  t2 and 5 are chosen, as in the proof of Lemma 4.5, in such a 

way that  no player can profit more than ~ by any non-detectable deviation, and 

the probability of false detection of deviation is bounded by ~. 

Let mn = # { t  < n: st ~ s t - l }  be the number of times the state process 

changes values until stage n. Recall that  0 is the stage of absorption. By condition 

5 the induced Markov chain is absorbing, hence, if no deviation is detected, there 

is some K > 0 such that  Pr(0 < + ~ , m e  < K)  > 1 - e .  By condition 4(b), 

in any visit to a state s E C(x, y) the players may profit at most (, while by 

conditions 2 and 3 no player can profit more than e by deviating in a detectable 

way. I t  follows that  if n is sufficiently large, no player can increase his expected 

average payoff by more than (K + 1)e using any deviation. In particular, g is an 

equilibrium payoff. | 
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5. P r e l i m i n a r y  r e su l t s  

A stationary profile (x, y) is a b s o r b i n g  if Prs,~,y(0 < +co) = 1 for every s �9 S; 

that  is, the game eventually reaches an absorbing state with probability 1. 

For every state s �9 S, let v~(x,y) be the expected undiscounted payoff for 

player i if the initial state is s and the players play the profile (x, y): 

v~(x, y) = E (1o<+o~us~) �9 

The function v(x, y) = (vs(x, Y))ses �9 R 21st is harmonic over S w.r.t, the transi- 

tion Ps,~, = Ws, (s, xs, y~). If (x, y) is absorbing then v(x, y) is the unique solution 

of the following system of linear equations: 

(5) ~s = u~ Vs �9 T, 
~s = / ; ~ ( s , x ~ , y s )  Vs �9 R. 

LEMMA 5.1: Let (x, y) be an absorbing stationary profile. Let g: S -~ R 2 be 

2 for every s E T. Then such that r xs, ys) < g~ for every s �9 R and g~ = u~ 

v~(x, y) < ~ for every s �9 s 

Proo~ v 2 (x, y) is a harmonic function and g2 is a sub-harmonic function over 

S that have the same values over T. Hence v2(x, y) - g2 is a super-harmonic 

function that vanishes over T. Since (x, y) is absorbing, v2(x, y) - g 2  is non- 

positive. I 

COROLLARY 5.2: Let x be a stationary strategy of player 1. Let g: S -+ 1% 2 

satisfy, for every stationary strategy y of player 2, g2 > r xs, ys) for every 

2 < g~ for every s E S. 2 for every s E T. Then e s _ s E R and g2 _ us 

Proo~ Since the game is a positive recursive game with the absorbing property, 

the best reply of player 2 against the stationary strategy x is a stationary strategy 

y such that (x, y) is absorbing. By Lemma 5.1, v2s(x, y) < g~ for every stationary 
2 (  2 strategy y such that (x, y) is absorbing and s E S. Hence c s _ gs- I 

A symmetric proof proves the following lemma: 

LEMMA 5.3: Let y be a fully mixed stationary strategy of player 2. Let g: S -+ 

R 2 satisfy, for every stationary strategy x of player 1, r xs, Ys) <_ 91 for every 
1 ~  1 1 for every s E T. Then e s g8 for every s E S. s E R and gX s = u s 
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6. T h e  e - app ro x ima t in g  g a m e  

6.1 THE GAME. Let e* = 1/IB I. For every e E (0, e*) define the set 

(6) Ys(e)= { y ~ E A ( B ) ]  ~-~ybs~clBl-IJI V J C B ) .  
bEJ 

Let Y(e) = • Every stationary strategy y E Y(e) is fully mixed. 

Since the game satisfies the absorbing property, the payoff function v(x, y) is 
continuous over X • Y(e). 

Define the e-approximating game G~(e) as a positive recursive game with the 

absorbing property (S, A, B,w, u), where player 2 is restricted to strategies T 

such that T(h) E Ys(e), for every finite history h (s is the last state of h), and 

player 1 is not restricted. 

6.2 EXISTENCE OF A STATIONARY EQUILIBRIUM. Note that X and Y(e) (for 

every e E (0, e*)) are non-empty, convex and compact sets. Define the corres- 
pondence r X • Y(e) --+ A(A) by 

(7) r  argmax 
x'~C=A(A) 

that is, player 1 maximizes his payoff locally - -  in every state s he chooses a 
mixed action that maximizes his expected payoff if the initial state is s, player 

2 plays the mixed action y~, and the continuation payoff is given by v(x, y). Let 

LEMMA 6.1: The correspondence r has non-empty convex values, and it is 
upper semi-continuous. 

Proof: Since r X's, Ys) is linear in x~s for every fixed (s, x, y), r has non- 

empty and convex values. By the continuity of v 1 over the compact set X • Y(e) 

it follows that r is upper semi-continuous. I 

Define the correspondence r X • Y(~) -+ Ys(e) by 

(s) r y) = argmaxr xs, Ys). 
y~eYs(e) 

Let r = •162 As in Lemma 6.1, since Ys(e) is not empty and convex 

whenever e E (0, e*), we have: 
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LEMMA 6.2: The correspondence r has non-empty convex values, and it is 

upper semi-continuous. 

Define the correspondence r X • Y(e) --~ X • Y(e) by 

Co(x, y) = r • r 

By Lemmas 6.1, 6.2 and by Kakutani's fixed point Theorem we get: 

LEMMA 6.3: For every c �9 (0, e*) there exist (x(e), y(e)) �9 X • Y(e) that is a 

fixed point of the correspondence r 

6.3 THE BEHAVIOR AS s --~ 0. Since the state and action spaces are finite, 

there exist sequences {en}neN of positive real numbers and {(x(n), Y(n))}neN of 

stationary profiles such that: 

C.1. en --+ 0, and (x(n),y(n)) E X • Y(en) is a fixed point of r  for every 

n E N .  

C.2. For every s �9 S, supp(xs(n)) and supp(ys(n)) are independent of n. 

In the sequel, we need that various sequences that depend on {x(n)) and {y(n)} 

have a limit. The number of those sequences is finite, hence, by taking a 

subsequence, we will assume that the limits exist. 

Remark: Using the method of Bewley and Kohlberg [1], it can be proven that 

we can choose for every ~ > 0 a fixed point (x(~), y(~)) of r such that  x and 

y, as functions of e, are semi-algebraic functions (they have a Taylor expansion 

in fractional powers of e), hence C.1 and C.2 hold for every e sufficiently small 

(and not only for a sequence {~n}). In particular, all the limits that  we use in 
the sequel exist. 

We denote for every n �9 N and s �9 S, ds(n) = vs(x(n),y(n)).  Denote ds(co) = 

l i m n - ~  d~(n), x~(oc) = l imn_~ x~(n) and ys(oc) = lim,~_,~ ys(n). 

LP.MMA 6.4: Let sl �9 S and bl, b2 e B. Iflim,~_~y~ll(n)/yb~(n) < oo, then for 
every n sufficiently large 

_ ,(x(n),y(n))(sl,xs~(n),b2). 

Prook Assume that  the lemma is not true. Then, by taking a subsequence, 
2 S 2 8 Cv(x(n),y(n)) ( l, xsl (n), bl) > Cv(x(~),y(n))( 1, xs~ (n), b2) for every n �9 N. Define 

for every n the stationary strategy yl(n) for player 2 as follows: 

Ib ~ yb2(~t)/2, ( 8 , 5 )  : (Sl,b2), 
(n)  --  + (s ,  b) = ( b n y ~ ( ) ,  otherwise. 
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Let us verify that y'8(n) E Ys(c~) for every n sufficiently large. Otherwise, by 

taking a subsequence, there exists a set J C_ B such that b2 E J,  bl ~ J and 

,b s (9) E Y~ (n) < Vn E N. 
bEJ 

In particular, l imy b~ (n)/e kBl-IJI < co. By the assumption, l imy bl (n)/e kBl-IJI < 

co as well. Since ~'].beJ Yb(n) + yb, (n) >_ e IBI-IJI-1 it follows that there exists 
b E J \ (b2)  such that  limyb(n)/e IBI-IJI-1 > 0 - -  a contradiction to (9). 

However 

2 8 2 Cd(n)(,xs(n),Y~s(n)) - ~)d(n)(S, X s ( n ) , y s ( n ) )  = 

~ y~l, )/  >0, 

a contradiction to C.1. I 

By applying Lemma 6.4 in both directions, and taking the limit as n -+ co, 

we conclude that if player 2 plays two actions with approximately the same 

frequencies then the corresponding limits of his continuation payoffs are equal: 

COROLLARY 6.5: Let bl,b2 E B and s E S. I f l i m ~ y b l ( n ) / y ~ 2 ( n )  E (O, oo) 
then 

r (~, x.(co), bl) = r ~8(~),  b~). 

COROLLARY 6.6: For every b E supp(y~(oo)) 

Proof 
d2(co) = lim d~(n) 

= Jim r ~(~), y~(~)) 

=r (~, ~(co) ,  y . (~ ) )  
---- Z b 2 ys(~c)r (~, x,(~),  b). 

bEsupp(ye (cr 

The result now follows from Corollary 6.5. I 

By Lemma 6.4, Corollary 6.6 and the continuity of r it follows that  

(10) r Xs(co),b ) <_ d~(co) kt(s,b) E S x B. 

By Corollary 5.2 and (10) it follows that  

2 < d~(co) Vs e S. (II) c~ 
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In particular, (10) and (11) yield 

(12) r xs(oo),b) < d2s(oo) V(s,b) �9 S x B. 

By C.1, we get that for every n 

(13) r ys(n)) <_ d~(n) V(s,a) �9 S x A, 

and equality holds whenever a �9 supp(xs(n)) (which is independent of n by C.2). 

Taking a limit in (13) as n --+ oc we get 

(14) r ys(oo)) <_ d~(oo) V(s,a) �9 S x A, 

and equality holds whenever a �9 supp(xs(n)). 

By Lemma 5.3 and (13), c~ <_ d~(n) for every s �9 Z and every n �9 N, and by 

taking the limit as n -~ oc, 

(15) 

Therefore, 

(16) r a, ys(c~)) _< d~(c~) V(s, a) e S x A. 

To summarize, we have asserted that d~ (oo) is greater than the min-max value 

of player i (Eqs. (11) and (15)), and that no player can receive more than ds(co) 

by playing any action in any state s and then be punished with his min-max 

value (Eqs. (12) and (16)). 

7. E x i s t e n c e  of  an  equ i l i b r ium payof f  

In this section we prove Proposition 3.7. This is done by showing that the 

conditions of either Lemma 4.5 or Lemma 4.6 hold. Denote the two non-absorbing 

states by R = {sl, s2}. 

7.1 EXITS FROM A STATE. F i x a s t a t e s  E Ssuchthatws(s, xs(co),ys(oc)) = 1. 
In particular, s E C(x(c~), y(c~)). Since the game satisfies the absorbing property, 

E,(x(co),y(oo) )r O. 
Let p~ be the probability distribution over E~ y(cx))) that is induced by 

(x(n), y(n)). Formally, we define for every e E E~ y(c~)) 

{ x~(n), e = (s,a,y(co)) e D~(x(co),y(oo)) 
/5~(e) -- yb(n), e = (s,x(oo),b) e D2(x(oo),y(oo)) 

x~(n) x y~(n), e = (s,a,b) e D3(x(oo),y(cc)) 
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and p~(e) = p,~(e)/}--~eEO(x(oo),v(oo)) p~(e). 
Since y(n) is fully mixed and the game satisfies the absorbing property, p~ is 

def ,. s a well defined probability distribution. Define p~ = llmn-~oo Pn" 
Every pair of actions (a, b) C A • B such that ws(s, a, b) < 1 is either in the 

support of some exit in E~ y(oo)), or there exists a pair (a0, b0) which is 

in the support of some exit in E~ y(oo)) such that 

lim x~(n)yb(n) -- O. 
ao ,, oo (nM~ 

Since d8 (n) = Cd(n)(s, xs (n), Ys (n)), by taking the limit as n --+ oo we have 

(17) ds(oo) = E p~(e)r 
eEE~ 

That is, the average continuation payoff over the exits is equal to ds (oo). 

Since dl(n) = r (s,a, ys(n)), by summing over all a �9 supp(xs(c~)) and d(n) 

taking the limit as n --+ oo we have 

( E Ps~(s'xs(~176 dls(c~)= 
(18) b :  (s ,x~(oo) ,b)ED~(x(oo) ,y(oo))  

X: p (s, b). 
b : ( . . . .  (oo) ,b)eD~(x(oo) ,y (oo))  

Let a ~ supp(xs(co)) such that x~(n) > 0 for every n > 0. Then, as in (18), 

(19) 
E 

b :  ( s ,a ,b )eD3(x(oo) ,y (oo) )  

p~(s, a, b)) d~(oo) = 
/ 

p~(s, a, b)r , a, b). 
b : ( s ,a ,b)ED~(x(oo) ,y (oo))  

Eq. (18) means that the average continuation payoff of player 1 over the unilateral 

exits of player 2 is equal to d 1(oo), whereas Eq. (19) means that for every action 

a ~ supp(xs(CO)), the average continuation payoff of player 1, restricted to pure 

joint exits e with x(e) = a, is equal to d~(co). Together, these lemmas imply 

some indifference property from the point of view of player 1. This should not 

surprise us, since player 1 is not restricted in the approximating game. 

LEMMA 7.1: There exist two exits el,e2 E Es(x(c~),y(co)) and a C [0, 1] such 
that 
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1. d~(oc) = ~b~(~)(ej) [or j = 1,2. 

2. d~(~)  = ar + (1 - a)~(~)(e: ) .  
3. At most one of el,e2 is an exit of player 2. 
4. I f  there exists e ~ supp(p~) such that wT(e) > O, then WT(el)+WT(e2) > O. 
5. I f  ej e D~(x(co),y(oc)), then d~(c~) = r ys(OO)) for every 

a E supp(xs(ej)). 
2 (s, Xs (co), b) x., (oo), b') 6. e then Cd( ) = 

every b, b' �9 supp(y~(ei) ). 

Proof: For every a E A such that ws(s,a, ys(OC)) > 0, define ~s(a) = Ys(~). 

By (14), r a, ~s(a)) = dsl(Oc) for every such a. 

For every a E A such that Ws(S,a, ys(cr = 0 < w~(s,a, ys(n)) for every 

n E N, define ys(a) E A(B) by 

= {0 ,  w,(s ,a,b)  = 1, 
p~(s,  a, b)/~-~b ..... (~,a,b)<l p~(s, a, b), otherwise. 

By (19), r = dsl(co) for every such a. 

If there exist al,a2 r supp(x~(ec)) for which fls(al) and ~s(a2) are defined 

such that r al,~(a~)) > d2s(oc) >_ C92(s, a2,98(a2)), we are done. Indeed, 

define ej = (s, aj,98(aj)) for j = 1,2 ~nd choose a e [0, 1] that satisfies 2. Note 

that in this case, one can choose such al and a2 so that (4) holds. 

Otherwise, either for every a ~ supp(xs(~C)), w~(s,a, ys(n)) = 1 for every 

n, or for every a ~ supp(xs(CC)), ~(s,a~,~s(al))  > d2(cx)). In both cases, 

(17) implies that w.~(s,x~(cc),y~(n)) < 1 for every n. Hence one can define a 
probability distribution ~)s e A(B) by 

-b {0, Ws(S,X~(Oo),b)=l, 
Ys = p~(s,  x~(~c), b)/~-~b: ,~(8,~(~r p~(s,  X~(OC), b), otherwise. 

By (10), < 
If ~9~(s, Xs(~),  ~ )  -- d2(oo), then by (18), el = (s, x.~(oc), ~,~) and a = 1 satisfy 

the conclusion. 

If ~b~(s, Xs(OC), Ys) < d2(oo), then by (17), there exists al r supp(xs(oc)) such 

that ~ ( a l )  is defined. In particular, ~bg(s, a l , [ / s (a l ) )2 .  > d~(o,~). Moreover, if 

there is a r supp(x.~(oc)) with WT(S,a,[/~(a)) > 0, we can assume it is al. By 

defining el = (s, al, ?)s(al)), e2 = (s, x.,(oc), .~.,) and (~ E [0, 1] properly, the result 

follows, where conditions 1 and 5 follow from (18) and (19). 

In both cases, condition 6 follows from Corollary 6.5. I 



50 E. SOLAN Isr. J. Math. 

7.2 PROOF OF PROPOSITION 3.7. In this section we prove Proposition 3.7. 

Consider the following two conditions: 

A.1. R is communicating under (x(c~), y(cc)). 

A.2. For every s E R such that s E C(x(oc) ,y(~) ) ,  and every e E 

E~ y ( ~ ) )  such that p~(e)  > 0, we have WT(C) = O. 

We will prove that if conditions A hold then the conditions of Lemma 4.5 hold, 

while if they do not hold then the conditions of Lemma 4.6 hold. 

LEMMA 7.2: I f  conditions A do not hold then the conditions of Lemma 4.6 hold 

w.r.t. 

Proof: Define g = d(oo). We prove that the conditions of Lemma 4.6 hold 

w.r.t. (x(c~), y(c~)) and g. Condition 1 holds since ds(n) = u8 for every s E T 

and every n E N. Condition 2 follows from (16) while condition 3 follow from 

(12). Condition 4(a) follows from (14) and Corollary 6.6, whereas condition 4(b) 

follows from Lemma 7.1. Since conditions A do not hold, it follows by Lemma 

7.1 that condition 5 of Lemma 4.6 holds. I 

LEMMA 7.3: I f  conditions A hold then the conditions of Lemma 4.5 hold w.r . t .  

( x ( ~ ) ,  y ( ~ ) ) .  

Proof: To prove that the conditions of Lemma 4.5 hold, we need to find an 

exit e from R that satisfies various conditions. In particular, it should give high 

payoff for both players. 

As in section 7.1, (x(n), y(n)) induce a probability distribution over the exits in 

ER(x(cx~), y(c~)), and we could have looked for some exit whose limit probability 

is positive. 

We choose a different path. We first identify the state where the payoff for 

player 2 is higher: d21 (n) >_ d22 (n) for every n. We then look for the actions of 

player 2 that  cause the game to be absorbed from sl with positive probability, 

and player 2 plays as often as he can. Since player 2 is restricted, and since in sl 

the payoff of player 2 is higher, if absorption occurs through those actions player 

2 gets at least d 2 (~ ) .  Since player 1 is indifferent between his various actions, 8 ,  

it will follow that the exit that corresponds to those actions of player 2 is the 

desired one. The limit probability of this exit might vanish. 

We now turn to the formal proof. 

By taking a subsequence and exchanging the names of sl and s2 if necessary, 

we can assume that exactly one of the following holds: 

B.1. Either d 2 (n) > d 2 (n) for every n E N. 
81 82 
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B.2. Or d21 (n) = d~2 (n) and d~, (n) > d~2 (n) for every n �9 N. 

B.3. Or d21(n ) = d2~(n), dlsl(n) = d~2(n ) and WT(S1,Xs~(n),y81(n)) > 0 for 

every n �9 N. 

Recall that  supp(x~(n)) and supp(ys(n)) are independent of n for every s �9 S. 

STEP 1: Definition of e. 

Note that WT(Sl, Xsl (n), Ysl (n)) > 0 for every n E N. Otherwise, it follows that 
d~ 1 (n) = d~ 2 (n) for every n, which contradicts B.1, B.2 and B.3. 

Let B* be the set of all actions b E B such that 

�9 WT(Sl, xsl (n), b) :> 0 for every n. 

�9 l imn_~  yb 1 (n)/yb'~ (n) > 0 for every b' such that WT(Sl, x~  (n), b') > 0. 

B* contains all actions of player 2 that are absorbing, and played most often. 

* n Since WT(Sl,X~l(n),y~(n)) > 0 for every n, it follows that B* ~ O. Let Ys~( ) 
be the probability distribution induced by Ys~ (n) over B*, and let Y~l(co) be 
the limit distribution. By the definition of B*, supp(ys* ~ (co)) = supp(ys~ (n)) for 

every n. 

Let A* be the set of all actions a E supp(x~ (n)) such that WT(Sl, a, y~ (co)) > 
0; that is, the actions of player 1 that are absorbing against y* (co). Since 

supp(y* 1 (co)) = supp(y~ 1 (n)), A* is well defined. 

Note that for any a e A*, WT(Sl,a,y~(n))  > 0, hence wT(sl,a,Y*l(co)) > O. 
Moreover, if a' r A* then l i m n - ~  WT(Sl, a, Y~I (n))/WT(Sl, a', y~, (n)) = +co. 

Let x*,(n) be the probability distribution over A* induced by x~(n) .  
Denote x* 1 (co) = l i m n - ~  x~* 1 (n). Then WT(X* 1 (co), Y*I (co)) > 0, hence c = 

X* * (el, ~l(co),Ysl(co)) is an exit from R. 

S T E P  2: d 2 ( c o )  < 81 

Assume to the contrary that d~ (co) > r d(~) (e). In particular, for n sufficiently 
large, d21 (n) > r By the definition of A* and since d21 (n) _> d~ (n) 

2 it follows that d2(n) > r for n sufficiently large. Since 
d21(/ t )  __ 2 Cd(n)(sl, X~ (n), Y~I (n)), it follows that there exists an action b0 C B 

2 such that d2 (n) < Cd(,~)(el, x81(n), bo) for n sufficiently large. By Lemma 6.4, 
" bo b h m ~ _ ~  Y~I (n)/Y81 (n) = co for every action b E B*, and by the definition of B*, 

b0 ~ B*. In particular, WT(Sl, x,~ (n), b0) = 0, which implies that for every n, 
2 d21 (n) _> Cd(~)(el, x~l (n), b0) - -  a contradiction. 

STEP 3: d~l(co ) ~ r162 

Assume to the contrary that dis1 (oc) > r162 In particular, dis1 (n) > r 

for n sufficiently large. However, this implies that d~l (n) < d~ (n) and there exist 

a �9 A* and bo �9 B such that w~2(sl,a, bo ) > 0 and limn_~ooyb~ ) = co 
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for every b E B*. Indeed, otherwise it follows by the definition of B* that  
1 for every a E A* and n sufficiently large, rill(n) > Cd(n)(Sl,a,y(n)), which 

contradicts assumption C.1. 

Hence B.1 holds, and therefore d 2 (n) > d 2 (n) for every n E N. For 
81 82 

every b E B such that w81(sl,x81(n),b) = 1, d2(n) = r ). For 

every b E B such that WT(Sl,Xs~(n),b) = 0 and Ws2(S1,Xs~(n),b) > 0 (such 
2 as b0), d21(n) > Cd(n)(sl,xsl(n),b). By Lemma 6.4, for every b E B such 

bo n b n = d21(n) > r It follows that that limn-~o~ Ysl ( )lYs~ ( ) c~, 
r xs~ (n), Ys1 (n)) < d281 (n) for n sufficiently large - -  a contradiction. 

STEP 4: Definition of the equilibrium payoff. 

Define g = (gs)ses E R 2131 by 

us, s E T, 
g8 = ~s,eT~S'(~)%' wr(~) , S E R. 

STEP 5: The conditions of Lemma 4.5 hold w.r.t. (x(c~), y(oc)) and g. 

Condition 1 of Lemma 4.5 follows from the definition of z. Condition 2 fol- 

lows from step 3 and (16) while condition 3 follows from step 2, (10) and (11). 

Condition 4 follows from (14) and condition 5 follows from Corollary 6.5. I 

8. M o r e  th an  two non-abso rb ing  s ta tes  

Why does our approach fail for games with more than two non-absorbing states? 

The reason is that  if conditions A hold, then the equilibrium payoff that  we 

construct need not be equal to d(c~) (see Lemma 7.3), and we run into a similar 

problem as when trying to generalize the proof of Vrieze and Thuijsman [11] for 

more than one non-absorbing state. 

As an example, consider the game with four non-absorbing states (Figure 1). 

Let (x(n), y(n)) be the stationary profile indicated in Figure 1. It is easy to 

verify that  (x(n), y(n)) is a fixed point of the correspondence r defined in 

section 6. Indeed, both players are indifferent between their actions in states 3 

and 4, and in states 1 and 2 player 2 must play each action with a probability at 

least 1/n. Hence the strategy of player 2 is a best reply in Y(1/n).  The expected 

payoff for player 1 by this stationary strategy profile is 

1/n , - 1 / n  1 -1  ( dl(n) 
2--- Un' 2 - 1/n'2 :r/ J 

One can verify that player 1 is indifferent between his actions in states 1 and 2, 

and therefore his strategy is a best reply against y(n). 
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Let C = {sl,s2}. Note that C is communicating w.r.t. (x(cc) ,y(oc)) ,  and 

that the exits from C w.r.t. (x(cr y(oo)) are (1, B, L), (1, T, R), (2, B, L) and 

(2, T, R). It turns out that Po~ is the uniform distribution over these four exits 

and therefore 

dl (cc)  = d2(cr = ~ ( 0 , 6 ) + ~ ( 1 , 1 ) + ~ ( 0 , 5 ) + ~ ( - 1 , 0 ) = ( 0 , 3 ) .  

However, there does not exist any way to exit from C in such a way that is 

individually rational for both players and yields the players an expected payoff 

(0,3). 

s t a t e  1 s t a t e  2 

1 1 ! 1 - ! 
~ n n 

1 , 
1 - ~  2 1,1 

1 . 
0,6 3 

1 

1 B 
?% 

1 --1,0 * 

0,5 * 4 

1/2 

1/2 

s t a t e  3 

1/2 1/2 

1 1,3 

1,3 * 1 

1/2 

1/2 

s t a t e  4 

a/2 1/2 

2 - 1 ,  3 * 

-1 ,  3 * 2 

Figure 1 

Though our approach fails for games with more than two non-absorbing states, 

we hope that one can prove the existence of an equilibrium payoff for an arbitrary 

number of non-absorbing states by finding another payoff function for player 2 

or another constraint on his strategy space (or both). 
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